Design of Flexural Members subjected to Axial Force

Er. M. C. Upadhyay

In this article the attention is drawn towards the design of flexural members subjected to axial force. It is shown that while using the charts of SP-16 the design not only becomes uneconomical but also unconservative.

There are cases when a flexural member is subjected to axial force; compression or tension. The members having such combined stresses are building frames (when subjected to lateral loads), arches, wall of a box section subjected to lateral forces, etc.

These flexural members should be designed for the axial force & moment as per basic equations derived here. If we use the charts of SP-16 for the columns subjected to uniaxial moment; we have to provide equal reinforcement on the both faces, because the charts have been prepared so & are primarily for compression members; obviously which is not economical.

\[
\begin{align*}
&f_c = 0.446 f_{ck} [2(\varepsilon_c/0.002) - (\varepsilon_c/0.002)^2] \quad \text{when } \varepsilon_c \leq 0.002 \\
&f_c = 0.446 f_{ck} \quad \text{when } 0.002 \leq \varepsilon_c \leq 0.0035
\end{align*}
\]

Area of the stress block = \(3x u f_c/7 + 8x u f_c/22\)

\(0.80952383x u f_c\)

where \(f_c\) can be equal to or less than \(0.446 f_{ck}\) depending upon the strain in the concrete.

Suppose the member is subjected to a moment \(M\) & a compressive force \(F\)

As total internal forces in the section are equal and opposite to the applied force

\(0.80952383 b x u f_c - A_{st} \sigma_{st} + A_{sc} \sigma_{sc} = F\)

As the depth of neutral axis can be represented as a fraction of effective depth \((=nd)\) this equation becomes

\(0.80952383 bnd f_c - A_{st} \sigma_{st} + A_{sc} \sigma_{sc} = F\)

M. C. Upadhyay, M.E. Str. Engr. (Sr. Design Engr) Jaiprakash Industries Ltd. N. Delhi
Taking the moment of the forces about c.g. of the tensile steel; we get

\[0.80952383 bnd f_c (d-0.416nd) + A_{sc} \sigma_{sc}(d-d') = M + F_g \]

(2)

where \(g \) the distance between the center of gravity of the section & that of the tensile steel and \(d' \) is effective cover to the compression steel

From equation (2) we get stress in concrete as

\[f_c = \frac{[M + F_g - A_{sc} \sigma_{sc}(d-d')]}{0.80952383 bnd f_c (d-0.416nd)} \]

(3)

From equation (1) we get stress in steel as

\[\sigma_{st} = \frac{[0.80952383 bnd f_c + A_{sc} \sigma_{sc} - F]}{A_{st}} \]

(4)

We have \(n, A_{sc}, \) \& \(A_{st} \) as variables for a given section and forces. Obviously the design requires trial & error.

I made a program to solve these equations in Excel, using solver facility of the Excel. The program assumes the values of \(n, A_{sc}, \) \& \(A_{st} \) and first calculates the stress in concrete using eqn. (3); using this value of stress in concrete it calculates the stress in steel using eqn. (4).

The strain in steel is calculated as below

\[\varepsilon_{st} = 0.002 + \frac{\sigma_{st}}{E_{st}} \]

\[E_{st} = 2 \times 10^5 \text{ Mpa} \]

For an assumed value of \(n \) & \(\varepsilon_{st} \) as above we calculate the strain in concrete as

\[\varepsilon_{c} = \frac{\varepsilon_{st} n}{(1-n)} \]

We now calculate the stress in concrete corresponding to this value of strain using eqn. (a) or (b); depending upon the value of strain. If this value of stress in concrete comes out to be the same as one calculated by eqn. (3); the assumed value of variables is the correct.

This procedure also can be used for a section subjected to axial tension in addition to moment by putting negative value of \(F \).

Example: Suppose a section of 300mmX450mm (effective depth) is subjected to an ultimate moment of 150 Knm and ultimate axial compression 200 Kn. D (overall depth)= 500mm We will design it as per exact solution explained above and by the charts of SP-16.

Assume grade of concrete M20, grade of steel \(f_y \) 415

Solving this by above procedure we get

\[n = 0.4791, \ p_c =0.1149\% \ (A_{sc} =155\text{mm}^2), \ p_t =0.6594\% \ (A_{st} =891\text{mm}^2) \]

\[\text{total steel} = 1046 \text{ mm}^2 \]

Using SP-16

\[Mu/f_{ck}bD^2 = 150 \times 10^6/(20*300*500^2) = 0.100 \]

\[Pu/f_{ck}bD = 200 \times 10^3/(20*300*500) = 0.0667 \]

\[d' = 50 \text{mm} \]

\[p/f_{ck} = 0.05 \text{ hence } p = 1.0 \text{ %} \]
Total Area = 1500 mm2, hence on tension side = 750 mm2 < 891 mm2

Hence we see that while we provide more total area by using SP-16 charts & in turn being unconservative on tension side; as the area provided on tension side is less than the actually required.

As per SP-16; for the points below the line $f_{st} = f_{yd}$ the outermost tension reinforcement undergoes inelastic deformation i.e. the stress in the reinforcement is more than the design yield strength ($0.87f_y$).

Closing Remarks

It is concluded that the design of flexural members with axial force should be carried out by basic principles not by any charts; in which equal reinforcement is provided on both faces; which is not economical for flexural members & sometimes unconservative too.