Design and Construction of P/T Concrete Structures
Hemant Gor, Structural Engineer
Date 28th August 08
Session Outline

• What is Prestressing?
• Materials For Post-Tensioning Work
• Overview of Post-Tensioning Systems
• Myths about Post-Tensioning
• Basic Design Concept, Load Balancing
Session Outline

- Advantages of Post-Tensioning
- Construction of Post-Tensioned Slabs
- Application of Post-Tensioning to transfer Girders
- ACI Provisions on Prestressed Concrete Design
- BS 8110 and TR 43 Provisions for Prestressed Concrete
What is Prestressing?

Prestressing is a method of reinforcing concrete. The concrete is prestressed to counteract the applied loads during the anticipated loads during the anticipated service life of the member.
Prestressed concrete (PC) vs. Reinforced Concrete (RC)

The main difference between RC and PC is the fact that the steel reinforcement in the Prestressed Concrete is ACTIVE and the same is PASSIVE in Reinforced Concrete.
Application of Prestressed Concrete

Nuclear Containment

Bridges

Water Tanks

Storage Structures

Pre-Cast Members

Buildings
Components of P/T work

Strand (0.5”/0.6” Diameter)
Confirming to BS 5896/ prEN 10386 / ASTM

Duct (Flat / Circular Ducts)
HDPE / Metal

Anchorage (Dead /Live End)

Grout

High Strength Concrete

\(f_{cu} \geq 35\text{MPa} \)
Description of P/T material

- **7 Wire Strands**

<table>
<thead>
<tr>
<th>Strand Type</th>
<th>Nominal Tensile Strength (MPa)</th>
<th>Nominal Diameter (mm)</th>
<th>Nominal Steel Area (mm²)</th>
<th>Minimum Breaking Strength (kN)</th>
<th>0.1% Proof Load (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9 Super</td>
<td>1860</td>
<td>12.9</td>
<td>100</td>
<td>186</td>
<td>158</td>
</tr>
<tr>
<td>12.7 Drawn</td>
<td>1860</td>
<td>12.7</td>
<td>112</td>
<td>209</td>
<td>178</td>
</tr>
<tr>
<td>15.7 Super</td>
<td>1770</td>
<td>15.7</td>
<td>150</td>
<td>265</td>
<td>235</td>
</tr>
<tr>
<td>15.7 Euro</td>
<td>1860</td>
<td>15.7</td>
<td>150</td>
<td>279</td>
<td>237</td>
</tr>
</tbody>
</table>
Pre and Post – Tensioned Concrete

Pre – Tensioning:
Steel reinforcement are stressed prior to concrete placement, usually at a precast plant remote from the construction site.
Example: Hollow Core Slab, Bridge I Girders

Post – Tensioning:
Steel tendons are stressed after the concrete has been placed and gained sufficient strength at the construction sites.
Example: Post – Tensioning of Floor Slab, Dubai Metro
Post-Tensioning System

- P/T Systems
 - Unbonded
 - Standard
 - Bonded
 - Encapsulated
 - External
What is Unbonded Tendon?

- Prestressing Steel is prevented from bonding to concrete and is free to move, relative to the surrounding concrete.
- Consists of 7 Wire Strands most commonly used sizes are 0.5” Diameter Strands.
- The Prestressing Force is transferred to the Concrete through the anchorage **ONLY**.
Post – Tensioning Systems

Unbonded vs. Bonded

- **Unbonded**
 - ✓ Force transmitted solely by the anchors
 - ✓ Total force limited by anchor spacing
 - ✓ Replaceable
 - ✓ Retrofit Openings require more care

- **Bonded**
 - ✓ Force transmitted by anchors and bond to concrete
 - ✓ Greater force can be applied
 - ✓ Strain compatibility with concrete
 - ✓ Minimizes need for Un-tension Reinforcement
 - ✓ Openings less Difficult
Force Balance: Example 1

Beam with uniformly distributed dead & live load

\[
\text{Force Balance Diagram}
\]

\[
\text{Force Balance: } \frac{8Ph}{L^2}
\]
Force Balance: Example 2

TRANSFER GIRDER (B x D) WITH ONE FLOATING COLUMN

FORCE BALANCE DIAGRAM
Force Balance Example 3

TRANSFER GIRDER (B x D) WITH TWO FLOATING COLUMN

\[W_{bal} = P\theta = \frac{2Ph}{L} \]

FORCE BALANCE DIAGRAM
Post- Tension Slab Scheme

<table>
<thead>
<tr>
<th>SPAN (IN m)</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLAT SLAB</td>
<td></td>
</tr>
<tr>
<td>FLAT SLAB WITH DROP PANEL</td>
<td></td>
</tr>
<tr>
<td>WAFFLE SLAB</td>
<td></td>
</tr>
<tr>
<td>BEND BEAM AND SLAB</td>
<td></td>
</tr>
<tr>
<td>RIBBED SLAB</td>
<td></td>
</tr>
</tbody>
</table>
Typical Two-Way Spanning Floors

- Solid flat slab
- Solid flat slab with drop panel
- Broad beam flat slab
- Coffer slabs
- Coffer slab with panels
- Banded coffer slab
Example slide

Ribbed slab

Beam and slab
Initial Sizing of Post – Tension Members

Span to Depth Ratio

<table>
<thead>
<tr>
<th>Characteristic Imposed Load Q_k kN/m²</th>
<th>Flat Slab</th>
<th>Flat Slab with drop panel</th>
<th>Flat Slab with Band Beams</th>
<th>Ribbed Slabs</th>
<th>Waffle Slab</th>
<th>One Way Slab on deep beams</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Slab</td>
<td>Beam</td>
<td>Slab</td>
<td>Beam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>40</td>
<td>44</td>
<td>45</td>
<td>25</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>5.0</td>
<td>36</td>
<td>40</td>
<td>40</td>
<td>22</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>10.0</td>
<td>30</td>
<td>36</td>
<td>33</td>
<td>18</td>
<td>24</td>
<td>23</td>
</tr>
</tbody>
</table>
Layout of shear walls to reduce loss of Prestress and Cracking Effect

A) Favourable Layout

B) Unfavourable Layout
Tendon Arrangement

Tendons Geometrically Banded in Each Direction

Tendons Fully Bonded in One Direction & Distributed in other Direction
Input required by P/T contractor

- Floor General Arrangement Drawings
- Loading Diagrams (Live Load and Superimposed Dead Load)
- Un-tension Reinforcement Required at junction of Core / Shear Wall / Columns with Post Tension Slab
- Design Code ACI / BS 8110 / TR 43
- Flexural Member Type Classification
- Permissible Crack Width
Advantages of Prestressed Concrete Floors

- Increased Clear Span
- Thinner Slabs
- Reduced Floor Loads, Lighter Structures, Reduced Seismic Forces
- Reduced Cracking and Deflection
- Reduced Storey Height
- Rapid Construction
- Large reduction in conventional reinforcement
Method of Analysis of P/T Slab

- Equivalent Frame Analysis (2D Analysis)
- 3D Finite Element Analysis
 - Design Strips (EC2)
 - Full Tributary Width (ACI and BS)
Classification of P/T Beams

It is based on Flexural Tensile Stress under Service Loads

<table>
<thead>
<tr>
<th>BS 8110</th>
<th>ACI 318</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1 : No Tensile Stress</td>
<td>Class U : Uncraked</td>
</tr>
<tr>
<td>$f_t \leq 0.62\sqrt{f'_c}$</td>
<td></td>
</tr>
<tr>
<td>Class 2 : Tensile Stress $\leq 0.36\sqrt{f_{cu}}$</td>
<td>Class T : Transient</td>
</tr>
<tr>
<td>$0.62\sqrt{f'_c} < f_t \leq 1.0\sqrt{f'_c}$</td>
<td></td>
</tr>
<tr>
<td>Class 3 : Higher Tensile Stress compared to Class 2 based on Crack width Limitations (0.1mm/0.2mm)</td>
<td>Class C : Cracked</td>
</tr>
<tr>
<td></td>
<td>$f_t > 1.0\sqrt{f'_c}$</td>
</tr>
</tbody>
</table>
Post – Tension Member Design

• Checks for Service Load Combinations
 • Bending Tension and Compression Stresses at Transfer and Service
 • Minimum Average Pre-compression in Member
 • Crack width at location exceeding Permissible Tensile stress Limit

• Checks for Ultimate Loads
 • Flexure
 • Shear
Ultimate Flexure Design

- The Ultimate Flexure Check for following Combination
 - 1.4DL + 1.6LL + 1.0 Hyper static Moments
- Hyperstatic Forces
 - Generated in Indeterminate Structure
Secondary Moment

\[M_2 = \text{Secondary Moment} \]
- Developed in Post-Tensioned Concrete members due to Prestressing forces
- Consequence of constraint by the supports to the free movement of the member
 - Only develops in Indeterminate members
 - Simply Supported Beams have zero secondary

Significant: Must be accounted for in the design of Prestressed Concrete Indeterminate Structures
Secondary Moment (cont’d.)

\[M_{\text{bal}} = M_1 + M_2 = P_e + M_{\text{sec}} \]

- \(M_{\text{bal}} \) = Balanced moment by post-tensioning equivalent loads
- Secondary reactions at supports due to prestressing
- Secondary Moments, \(M_2 \), vary linearly between supports
Post-Tensioning Slab Procedure

- Placement of Bottom Reinforcement Mesh
- Placing Flat Duct along with Strands in both Directions
- Concreting
- After 3 Days Transferring 25% of Total Prestress Force to avoid Shrinkage and Temperature Cracks
- Transferring remaining 75% of Prestress
- Grouting of Duct
Two Way Slab with Bonded P/T
Banded in One Direction and Distributed in Another
Stressing Tendons
Closure Strip

- Slab is temporarily allowed to cure in smaller segments
- Can locate the lateral system in the middle of the individual pour
- Allows for internal stressing – may be critical on subterranean projects
- Typically remain open for 30 to 60 days. Deck will still move for many months/years
Loss of Prestress

1. Short Term Losses
 1. Slip Loss (Pre-Stressing Steel Seating at Transfer)
 2. Elastic Shortening
 3. Friction Loss

2. Long Term Losses
 1. Creep of Concrete
 2. Shrinkage of Concrete
 3. Relaxation of Prestressing Steel
Transfer Girder

- Harped Profile may be more efficient to resist concentrated loads
- P/T Forces can balance the dead loads.
- Stage stressing to avoid overstressing the beams
- Multi Strand tendons when large forces are required
Transfer Girder
ACI Provisions on P/T Slab Design

- Minimum Average Pre-compression 0.85MPa
- Maximum Spacing of Tendons in any one direction shall not exceed lesser of 8 Times Thickness of Slab or 1.5m
- Maximum Permissible Tensile Stress limit is $0.5 \times (f'_{c})^{0.5}$ (for $f_{cu} = 50$MPa $f_t = 3.16$MPa)
Myths about P/T

- P/T Concrete is crack free
- You can not drill / make openings in P/T Slab
- It is impossible to upgrade / repair a P/T Structure
- P/T structures are not durable
- If you drill into a tendon, it will fly out of the building
Reasons to Consider P/T

- P/T slab is typically 30% thinner
- Long-term creep problems are virtually eliminated by load balancing
- Moment of inertia approaches I_{gross}
- The slab can be stressed and the forms removed in 2-3 days
- The 21 to 28 day shoring time for rebar concrete does not apply to P/T
- Flexibility in Column Layout
- Large Cantilevers
Thank You for your Attention
Movement Joint

(a) Wall-Slab Release Connection Detail (Option #1)

(b) Wall-Slab Release Connection Detail (Option #2)

(c) Connection of Post-Tensioned Slab To Wall With Splice Sleeves

(d) Connection of Post-Tensioned Slab to Basement Wall