What is Rebar Detailing?

- The art of placing reinforcing in a concrete member to follow the design intent

- Thou shall follow the design & placing rules of ACI, AASHTO, and CRSI...
Why is Detailing Important?

- It is how the project gets built
- Not everything gets caught
- It makes the SE think
- When problems occur . . .
 » Delays in the project
 » Cost implications
 » Possible finger pointing

U.S. Detailing Practice

Structural Design – A/E
- Building
 » Drawings / Specs
 » Placing Drawings
- Bridge
 » Structural – Placing Drawings

Detailing of Rebar in Concrete

- Buildings
- Bridges
- Role of SE & Detailer
- Two Case Studies
- What can we (SEs) do?
Buildings

Building Deliverables

- Drawings
 - Structural
 - Architectural
- Project Specifications
 - Section 03200 - Reinforcing
- General Notes

ACI 318 – Building Code

- Dawn of time
- Current version is 2008
- Governs building design
- Contains info on reinforcing
ACI 318, Section 1.2.1 – Drawings, Details & Specs

- Specified strength / grade of reinforcement
- Size and location of all
 » Structural elements
 » Reinforcement
 » Anchors

ACI 318, Section 1.2.1 – Drawings, Details & Specs

- Reinforcement anchorage lengths
- Lap splices
 » Location
 » Length
- Mechanical & welded splices
 » Type
 » Location

Building Drawings

- Beams / girders
- Columns
- Walls
- Foundations
- Plans, sections, & details
Building Drawings

Many elements are shown TYPICAL

- Beam / girder table
- Column schedule

Typical Beam Detail

Typical Column Details
Building Drawings

- **Structural (& arch) drawings**
- **Many typical details**
 - Schedules, tables
 - Bar size & spacing (#5 @ 12” o.c.)
- **Detailer’s role**
 - Placing plans development
 - Bill of material for fabrication

Bridges

Bridge Deliverables

- **Drawings**
 - Structural – rebar placing
 - Rebar schedules
 - Civil
- **General / structural notes**
- **Project special provisions**
 - Rebar covered in Std Specs.
Plans – Bar Schedule

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar ID (unique)</td>
<td>Quantity (or #)</td>
<td>Rebar size</td>
<td>Total length (including bends)</td>
<td>Depiction of shape</td>
</tr>
</tbody>
</table>

(E) = Epoxy coated

Plans – Bend Diagrams

- Stirrups
- L-bars
- Straight with 180° hook

Bar ID from schedule

Rebar Markings for Deck

DECK SLAB REINFORCEMENT
Plans – splices

- Bridge deck plan
- Splice locations & length

Bridge Drawings

- Structural & placing drawings
- Very prescriptive by DOT
 - a, b, c bars ~ deck
 - h(E) & v(E) bars ~ wall
- Detailer’s role
 - Check engineers layout
 - Bill of materials

Buildings vs. Bridges

Buildings - Private
- Bidding package
 - Lump sum
- Furnish and install
- Rebar lumped in
- Change orders
- RFIs
- Unique nature - not cookie cutter

Bridges - Public
- Bidding package
 - Unit prices
 - Itemized
- Rebar
 - Weight ~ plain & (E)
 - Placing unit
- Not many COs / RFIs
- Bridges are more typical
Admittedly, this is more focused on the building side

- What are the issues / concerns?
- Why worry?
 - Costs
 - Project delays
 - Structural issues

Meet Mr. Detailer . . .

- **Detailer**
 - Technically trained individual
 - Interprets contract documents
- **Responsible for**
 - Placing plans development
 - Bill of material for fabrication

They are not design professionals
Meet Mr. SE . . .

- **Structural Engineer**
 - BSCE, MSCE, or PhD
 - FE (EIT), PE, or SE
- **Responsible for**
 - Design of concrete
 - Preparing design plans & specifications
 - Placing/shop drawing review
 - Anything else to ensure our designs get built properly

We are licensed design professionals.

SE Point of View . . .

- What are the perceived “normal” relationships between SE and detailer?
- How can this relationship be improved?
- How do we solve the problems?
- Who takes the lead to avoid problems?

SE Relationship Perception

- **Detailer prepares placing drawings**
 - SE and architectural drawings
 - CRSI “Manual of Standard Practice”
- **SE provides background drawings to detailer to “assist” in starting plans**
 - Detailer verifies their scale & redraws if necessary
- **SE expectations:**
 - Detailer to be properly trained or
 - Working under the supervision of an experienced detailer
SE Relationship Perception

- SE expects interpretation questions during the preparation stage & prior to reviewing placing drawings
 » SE will provide quick response to questions
- Placing drawings to be complete with unanswered issues clouded
- SE will review promptly and clearly mark comments

SE Relationship Perception

- SE will not transmit design changes during the placing drawing preparation
 » During mark-ups
- Detailer addresses mark-ups prior to fabricating & issuing final drawings

How Can SEs Get Better? Part 1

- Recognize the tools available
 » Publications
- Get familiar with rebar detailing
 » Make buildable designs
 » Aids in placing drawing review
- Field issues cannot always be solved with a BFH
CRSI – Manual of Std. Practice

- First published by CRSI in 1927
- Industry “Standard Practices” for all activities related to steel reinforcing bars
- Essential reference for the A/E

ACI Committee 315 Report

- Details and Designing of Concrete Reinforcement (ACI 315-02)
- Reported by ACI Committee 315

ACI Detailing Manual

- Current Edition ~ 2004
- Contains ACI 315 report
- Illustrative standards
- Example drawings
 - Slabs
 - Walls
 - Footings
 - Bridges
 - Etc.
Two “What Went Wrongs”

- Continuous beams
- Slab folds

Continuous Beam

SE Typical “Screw Ups”

- Conflicting reinforcing over support
 » Different sizes called on adj. beams
- Too many bars for beam width
 » Specify layers
- No direction on rebar location at intersecting beams
- Full length bars not taken into account
- Congestion over columns
 » Take column reinforcing into consideration
Slab Folds

- Two Way Slabs
- Difficult for detailers
- Slab elevation differences and the complexity of a two-way slab

Slab Folds Again

- SE Typical “Screw Ups”
 - Detail is not cut on plan
 - Extent of fold not clearly shown
 - Fold not coordinated with architectural
 - No instructions are provided when fold depth exceeds “maximum fold allowed”
 - Fold location – many bar lengths
 - Framing bars
 - Fill bars spliced to longer bars
Typ. Detailer “Screw-Ups”

- Slab reinforcing is “replaced” by fold reinforcing
 - Two-way reinf. not considered
- Other structural components in vicinity are effected
- Incorrect laps
 - Location, length

Problem Resolution

- Identify issues ASAP & communicate to all parties
- Share possible solutions
- Document, but “do not point fingers”
- Implement best solution ASAP
 - Keeps job moving
- Learn from problems & don’t repeat
 - At least not on the same job

Improving the Relationship

- Allow communication between parties
- Provide Detailer with latest set of contract documents
 - Including architectural drawings
- Encourage detailer to contact SE during placing drawing preparation
- Share “lesson learned” experience from previous projects
Improving the Relationship

- Identify potential problems ahead of time
- Simplify and standardize details
- Follow latest codes & practices
- Keep Detailers trained and current

Meetings !!

- If needed, call early project meeting
 - Detailer, Subs, & GC
 - Discuss project “misunderstandings”
- Sub / Detailer may request meeting
 - Details confusing or not clear
 - He/she proposes alternate detail
 - Without changing intent, if these have worked previously

Stretch Time

2 minutes
How Can SEs Get Better?

- **Take the lead!!**
- **Identify potential issues in design phase**
 - Draw details to scale to visualize
 - Detail / think out the “tuffys”
 - Go beyond dots & lines
 - Recognize congestion issues

SE Takes the Lead . . .

- **Design process begins with EOR / SE**
- **In-house training of young engineers**
 - Starts ASAP upon hiring from college
 - Mentoring from experienced engineers
 - In-house seminars, site visits, lessons learned
- **Clarify intent at pre-constr. meeting**
- **Contact detailer early**
 - Initial placing drawings indicate a lack of understanding of design intent

U.S. Bar Sizes

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Nominal Weight, lb/ft</th>
<th>Diameter, in.</th>
<th>Cross-Sectional Area, mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (10)</td>
<td>0.376 [0.086]</td>
<td>0.375 [9.5]</td>
<td>0.11 [11]</td>
</tr>
<tr>
<td>4 (13)</td>
<td>0.668 [0.094]</td>
<td>0.500 [12.7]</td>
<td>0.20 [20]</td>
</tr>
<tr>
<td>6 (16)</td>
<td>1.043 [0.182]</td>
<td>0.625 [15.9]</td>
<td>0.31 [31]</td>
</tr>
<tr>
<td>8 (19)</td>
<td>1.502 [0.235]</td>
<td>0.750 [19.1]</td>
<td>0.44 [44]</td>
</tr>
<tr>
<td>10 (22)</td>
<td>2.044 [0.342]</td>
<td>0.875 [22.2]</td>
<td>0.60 [60]</td>
</tr>
<tr>
<td>12 (25)</td>
<td>2.670 [0.397]</td>
<td>1.000 [25.4]</td>
<td>0.75 [75]</td>
</tr>
<tr>
<td>14 (28)</td>
<td>3.300 [0.569]</td>
<td>1.125 [28.6]</td>
<td>0.91 [91]</td>
</tr>
<tr>
<td>16 (32)</td>
<td>4.365 [0.640]</td>
<td>1.250 [32.2]</td>
<td>1.27 [127]</td>
</tr>
<tr>
<td>18 (36)</td>
<td>5.313 [0.707]</td>
<td>1.375 [35.0]</td>
<td>1.56 [156]</td>
</tr>
<tr>
<td>20 (41)</td>
<td>6.660 [1.138]</td>
<td>1.500 [38.1]</td>
<td>1.85 [185]</td>
</tr>
<tr>
<td>22 (45)</td>
<td>7.960 [1.246]</td>
<td>1.625 [41.2]</td>
<td>2.15 [215]</td>
</tr>
<tr>
<td>24 (49)</td>
<td>9.260 [1.375]</td>
<td>1.750 [44.5]</td>
<td>2.46 [246]</td>
</tr>
<tr>
<td>26 (53)</td>
<td>10.560 [1.508]</td>
<td>1.875 [47.6]</td>
<td>2.77 [277]</td>
</tr>
<tr>
<td>28 (57)</td>
<td>11.860 [1.641]</td>
<td>2.000 [50.8]</td>
<td>3.08 [308]</td>
</tr>
</tbody>
</table>
U.S. Bar Sizes

<table>
<thead>
<tr>
<th>Bar Size</th>
<th>Nominal Diameter (in.)</th>
<th>Outside Diameter (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3/8</td>
<td>7/16</td>
</tr>
<tr>
<td>4</td>
<td>1/2</td>
<td>9/16</td>
</tr>
<tr>
<td>5</td>
<td>5/8</td>
<td>11/16</td>
</tr>
<tr>
<td>6</td>
<td>3/4</td>
<td>7/8</td>
</tr>
<tr>
<td>7</td>
<td>7/8</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1 1/8</td>
</tr>
<tr>
<td>9</td>
<td>1.128</td>
<td>1 7/16</td>
</tr>
<tr>
<td>10</td>
<td>1.270</td>
<td>1 7/8</td>
</tr>
<tr>
<td>11</td>
<td>1.140</td>
<td>1 3/8</td>
</tr>
<tr>
<td>12</td>
<td>1.683</td>
<td>1 7/8</td>
</tr>
<tr>
<td>13</td>
<td>2.257</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>

Figure 6-1 from CRSI's *Manual of Standard Practice*

Common Problem Areas

- Beam – column joints
- Brackets / haunches / ledges
- Integrity steel
- T-Joints
- Top of columns

Avoid Congestion

Beam-Column Joints
Beam-Column Joints

- Congestion is a given
- Consider making beams wider
 - B, 4 in, 2 in each side
 - Corner beam bars don’t interfere
- Consider ⊥ beams
 - Different depths or elevations
 - Top & bottom bar interferences
Column Brackets

- Where located on column?
- What is the size?
- Bar spacing?
- How does this effect the strut-and-tie model?

Bottom Integrity Rebar

- Lap outside column to avoid congestion

Retaining Wall T-Joints

Easier for contractor
Final Configuration

Shear Wall Ends – L to M

Shear Wall Ends – L to M
Column Ends – Headed Bars

Punching Shear Studs

SE Need to Knows - Rebar

- **Standard rebar stock length**
 - (40 to) 60 ft
 - Special lengths possible coordinate with mill or fabricator
- **Try to use same steel grade throughout project**
- **#14 & #18 may require lead time**
SE Need to Knows - Rebar

- Use largest bar size possible
- Repeat bar sizes & lengths
- Provide minimum 4 - 6 in. gap between top bars
- Follow ACI 315 for bending details
- Minimize bar bends & hooks
- Keep bars in one plane

SE Need to Knows - Columns

- Multi-story construction, usual practice
 - Limit column bar lengths to one story
- For larger bars & couplers
 - Two and three story heights possible
 - Bar sizes of #9 & > have sufficient stiffness to use free standing two story heights.

SE Need to Knows - Columns

- Use same column size, vary
 - Bar size
 - Concrete strength
- Lap splices permitted up to #11
- #14 & #18 bars have to be mechanically spliced or welded, if tension splice
Rebar Splicing - Coupler

- Couplers are:
 - Grouted
 - Threaded
 - Screw type
- Manufacturer's literature

Rebar Splicing - Couplers

- Couplers take up space
 - Greater diameter than rebar
- Stagger couplers
- Can they be installed?
 - Grouting
 - Set screws

Better SEs - Review

- Identify potential issues
 - Draw details to scale to visualize
 - Detail / think out the “tuffys”
 - Go beyond dots & lines
 - Recognize congestion issues
- Get familiar with rebar detailing
What Can Mr. CRSI Do?

- Manuals of Standard Practice
 - Keep current / up to date
 - Reflect latest Code changes
- Encourage & promote detailer training
- Promote field experience importance
 - Young engineers
- Work with college professors
 - Discuss importance of detailing
 - Properly expressing design in contract docs

Questions?